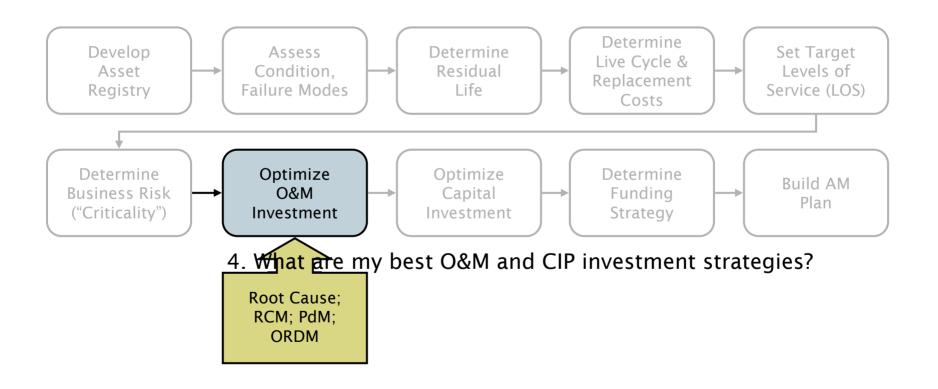
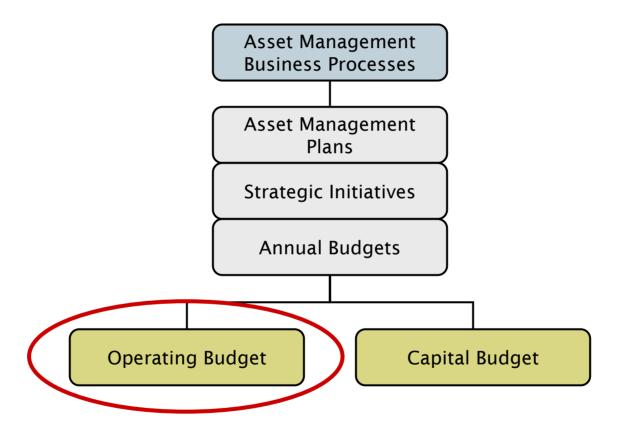
Fundamentals of Asset Management

Step 7. Optimize Operations & Maintenance (O&M) Investment

A Hands-On Approach

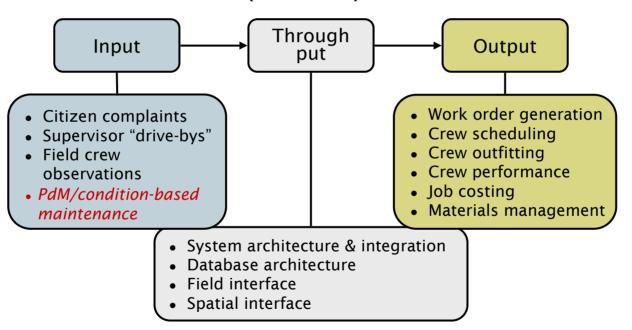

Tom's bad day...


Fourth of 5 core questions

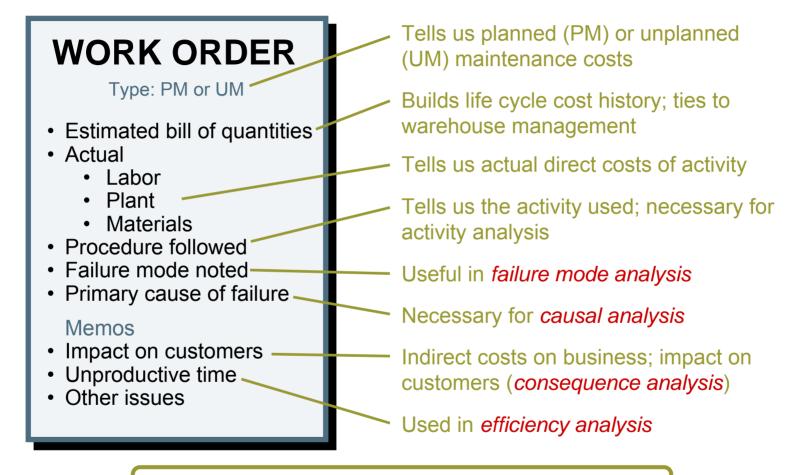
- What are my best O&M and CIP investment strategies?
 - What alternative management options exist?
 - Which are the most feasible for my organization?

AM plan 10-step process

Recall view 4: Management framework



Definition


Maintenance - normal support, periodic and minor in nature, required to sustain performance and functionality of an asset consistent with design, manufacturer, and operational requirements

What triggers a work order?

Computerized Maintenance Management System (CMMS)

Importance Of The Work Order: Asset Level

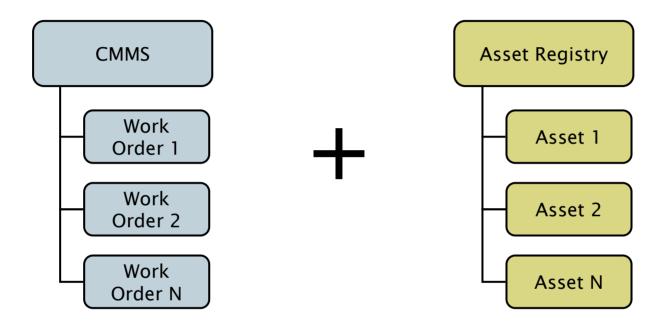
Data feedback enables substantive analysis

Bottom-line maintenance "KPIs" from an AM perspective

Metric	Definition	Target
Availability	The portion of time that a plant or major system is available for producing output of the required quality and quantity	95 – 99%
% Failure analysis	The portion of equipment downtime events that undergo a thorough analysis of failure modes, effects, and root causes	85 – 100%
% Planned work	The portion of corrective maintenance work hours that are planned and scheduled in advance (not unplanned breakdowns)	85 – 95%
% Overtime	The portion of maintenance work hours that are performed at an overtime rate	5 – 8%
Relative maintenance cost	Annual maintenance spending as a percentage of asset replacement value of the plant being maintained	1.5 – 2.5%
Technician productivity	The percent of work hours spent on productive activities versus nonproductive (rework, waiting for parts, etc)	70 – 85%
% Rework	The portion of maintenance work that has to be redone due to poor installation, shoddy workmanship or incorrect diagnosis	2 - 5%

Importance of the work order: Portfolio level

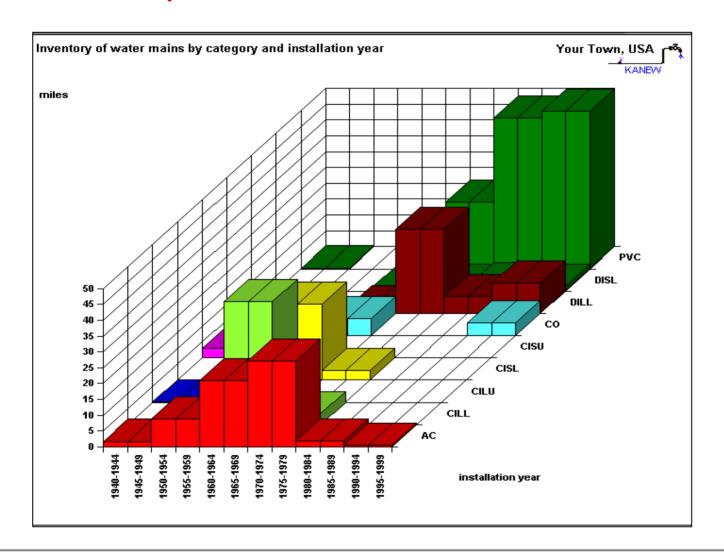
WORK ORDER

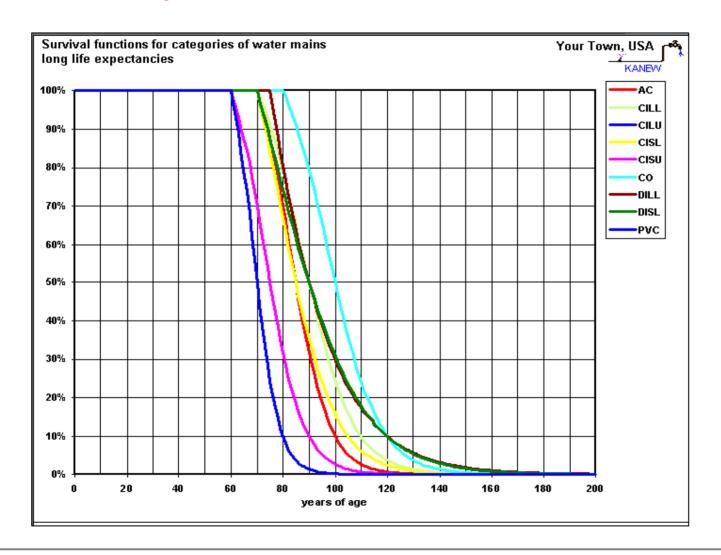

Asset details

- Type
- Category
- Size
- Condition
- Performance history
- Failure modes

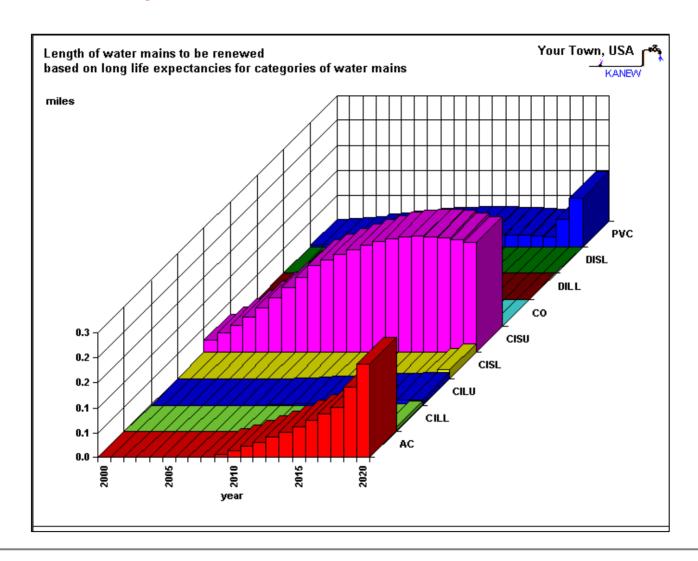
Asset-linked costs enable significant analysis...

- 1. What type of sewer suffers the greatest number of blockages caused by tree roots?
- 2. How many failures are experienced by water mains of different ages in different ground conditions?


What Distinguishes EAMS from CMMS?

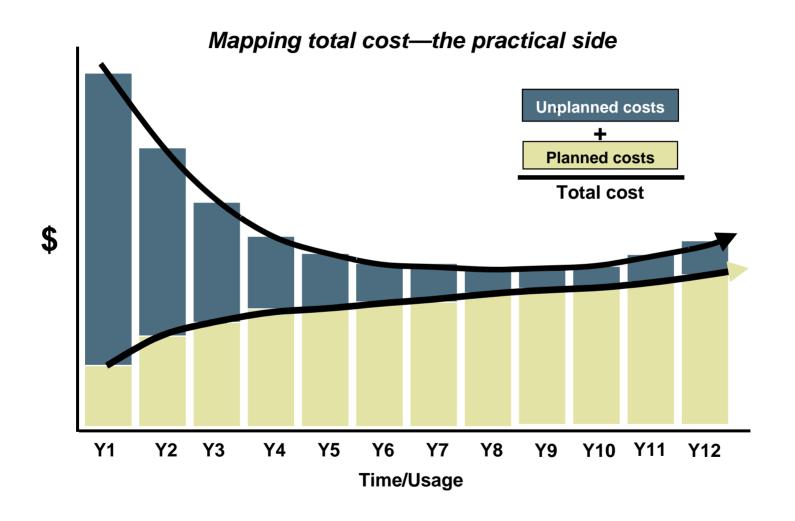

Focus is on the *maintenance* work order and maintenance performance for a defined period

Focus is on an asset's performance over its life cycle and on aggregate performance of asset groups

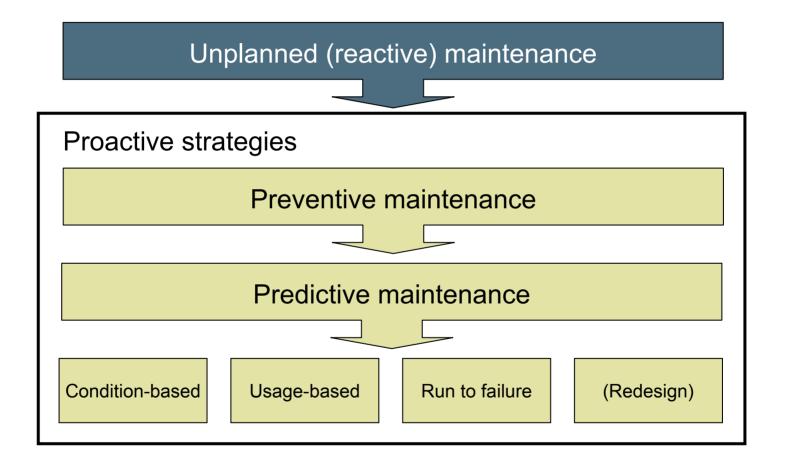

The asset portfolio view - 1

The asset portfolio view - 2

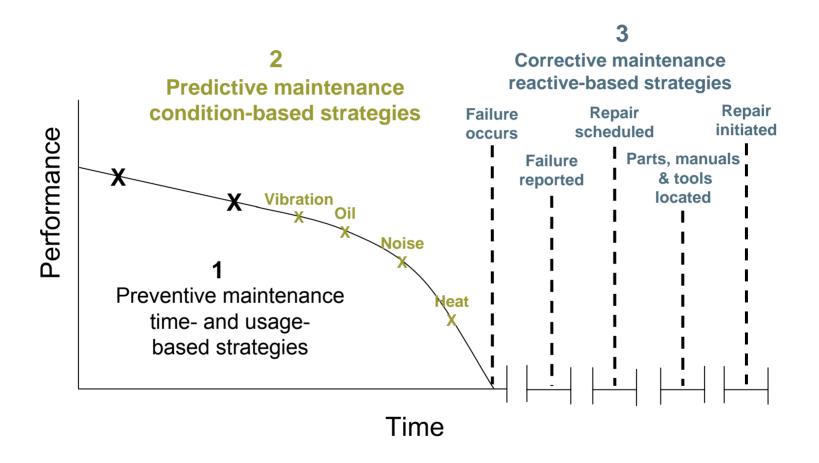
The asset portfolio view - 3



The Cost of Maintenance


Rule of thumb

Roughly speaking, planned maintenance costs one-third less than unplanned maintenance for the same task


Transition to Planned Maintenance

Evolution of maintenance techniques

Fitting maintenance strategies to failure curve

Cost comparison strategies & tactics—the maintenance toolbox

	Core strategies	
Total	Reliability	Zero
productive	centered	breakdown
maintenance	maintenance	maintenance

Operational tactics										
Design reliability analysis	Asset condition assessment	Early equipment management	Maintenance prevention							
Accelerated deterioration elimination	Infrastructure, equip- ment, & component standardization	Commodity configuration management	Design for serviceability							
Failure lead-time analysis	Demand criticality classification	Location failure analysis	Standardized failure codes							

Total productive maintenance

- Embraces both asset design and maintenance
- Goal is to maximize Overall Equipment Effectiveness (OEE), where

OEE = availability x performance efficiency x "first-time-through" quality

- Focuses on developing a comprehensive asset management plan for each asset for the life of the asset
- Ties maintenance objectives to the value chain (set-up time, lack of materials, poor quality, equipment functional failures, etc.)

Zero breakdown maintenance

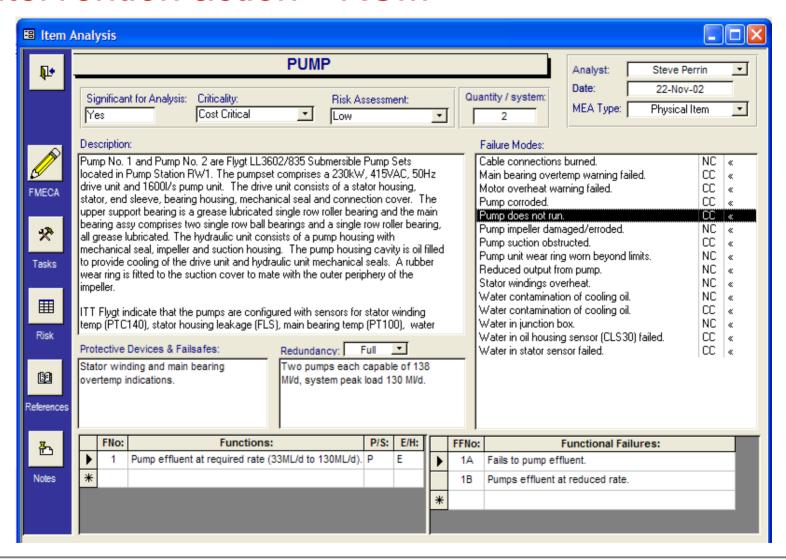
Comprised of six core strategies

- Eliminate continuing deterioration by establishing basic equipment conditions
- Eliminate continuing deterioration by complying with conditions of use
- Restore equipment to its optimal condition by restoring deterioration
- 4. Restore processes to their optimal condition by abolishing conditions that cause accelerated deterioration
- Lengthen equipment lifetimes by correcting design weaknesses
- Eliminate unexpected failures by improving operating and maintenance skills

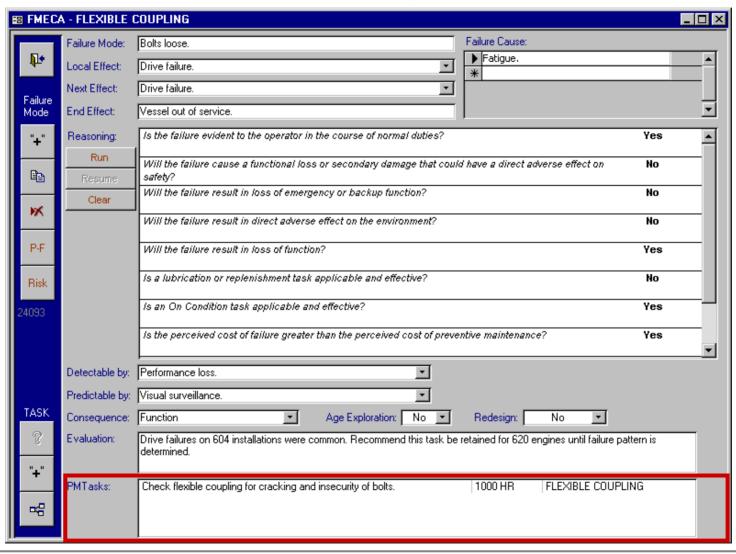
Zero breakdown maintenance

Strategies are deployed in four steps

- Reduce variation in failure intervals
- 2. Lengthen equipment life
- Periodically restore deterioration
- 4. Predict equipment life from its condition

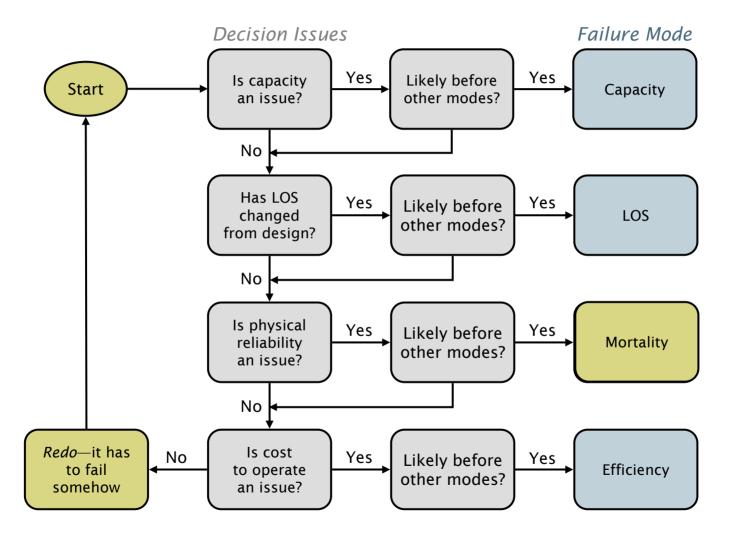

Reliability-centered maintenance—the seven fundamental questions

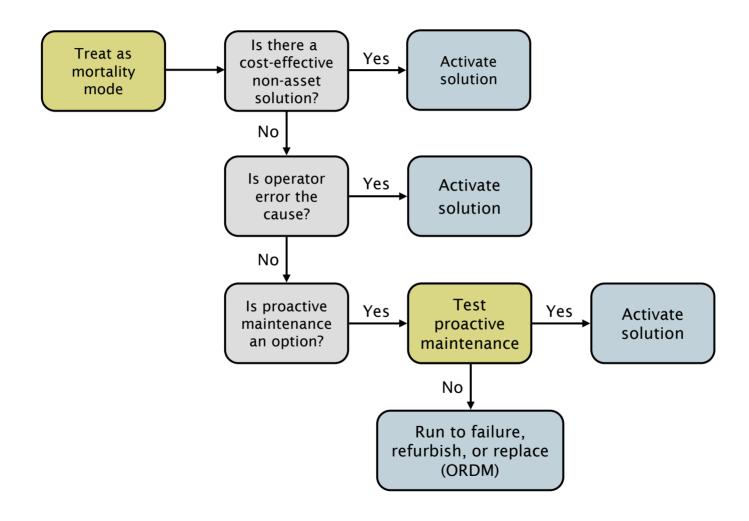
- What are the functions and associated performance standards of the asset in its present operating context?
- In what ways does it fail to fulfill its functions?
- 3. What causes each functional failure?
- What happens *mechanically* when each failure occurs?
- In what way does each failure matter?
- 6. What can be done to predict or prevent each failure?
- 7. What should be done if a suitable proactive task cannot be found?

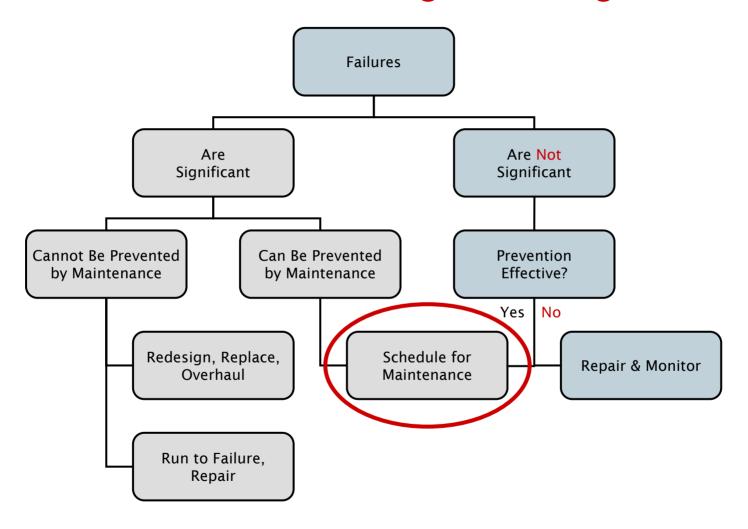

Techniques

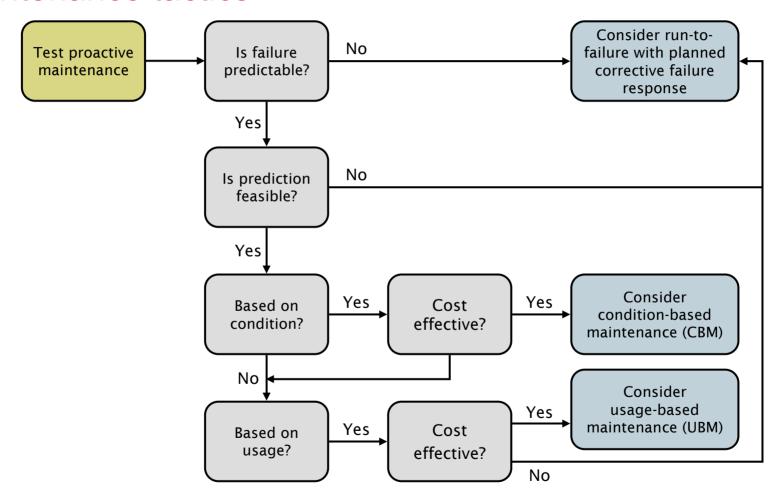
- Function and performance standards
- Functional failures
- Failure modes
- Failure effects
- Failure consequences
- Proactive tasks

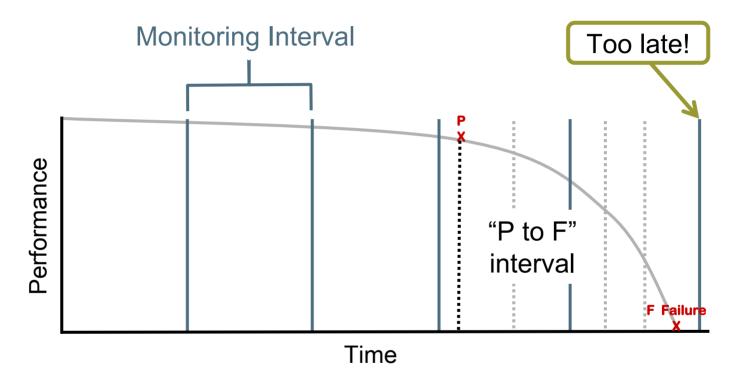
Intervention action—RCM


Intervention action—RCM, cont.

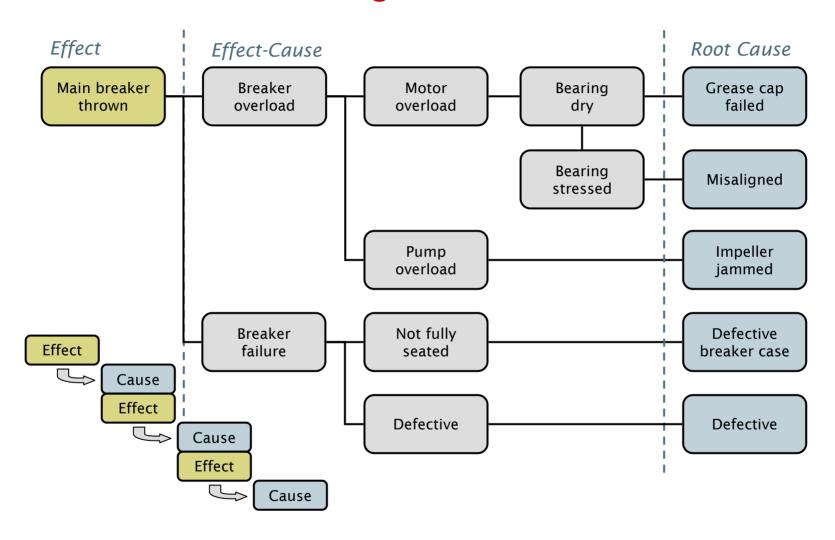

Alignment of routine O&M activities with organizational strategies


Using failure modes to determine probability of failure

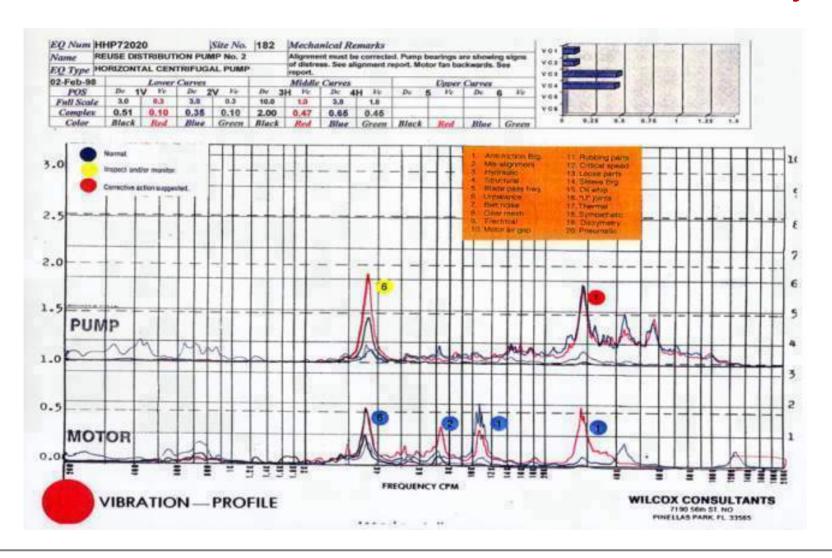

Tactical-level failure modes


Failure mode-based management logic

Mortality failure mode: Determining appropriate maintenance tactics



Predictive maintenance and the monitoring interval

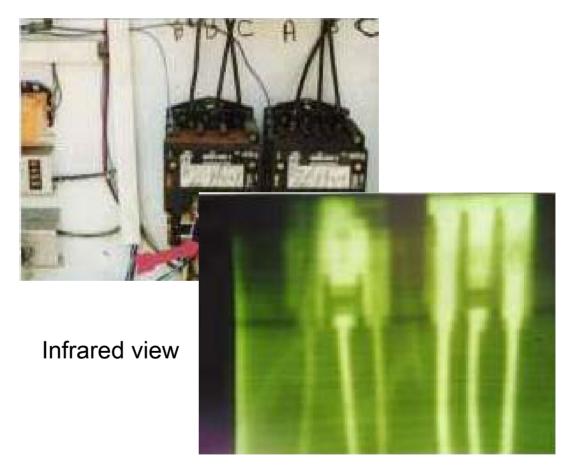


Can the progression of the failure be detected? Is there typically enough time to respond? Does consequence exceed cost of cure?

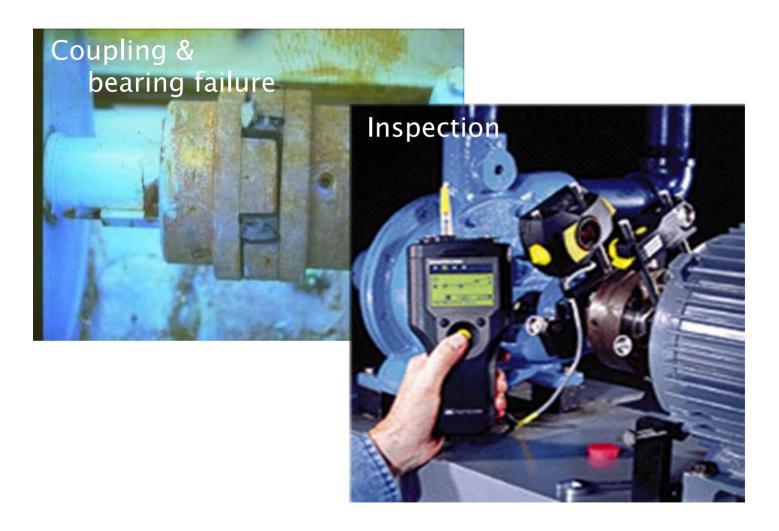
Cause and effect diagram—what to monitor

Condition-based maintenance: Vibration analysis

Power evaluation

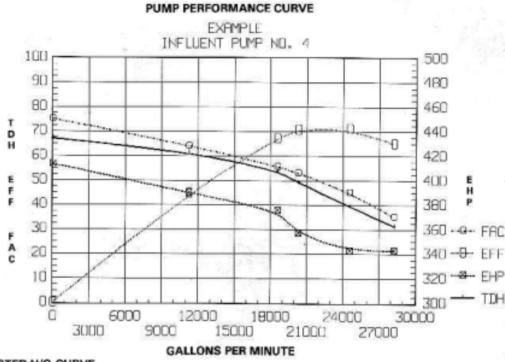

		Seu	20000000	Marion Control	DIO GELLAND	W			St 171 C 1855	ALTON CITE	Syste	110000000000000000000000000000000000000	998			
	Voltage Line to Amperage					Voltage Drops			Recorded, June, 1998 Power Data				Horsepower and Load Percent			
Equip. Number	A to B	BtoC	C to A	A	8	C	A	B	C	KVA	KVAR	KW	PF	Calc.	Rated	Percent
20LS-RSP-002	244.0	243.0	244.0	24.2	23.7	24.3	0.09	0.08	0.09	9.7	6.9	6.8	90.0	9.1	15.00	60.7
ABLS-RSP-001	474.0	473.0	475.0	24.1	25.1	25.7				17.5	2.8	17.2	98.7	23.1	25.00	92.4
ABLS-RSP-002	474.0	474.0	475.0	27.5	26.7	29.1				18.8	3.2	18.5	98.6	24.8	25.00	99.2
ABLS-RSP-003	474.0	475.0	475.0	25.4	25.8	29.5				17.8	2.9	17.6	98.7	23.6	25.00	94.4
BELS-RSP-001	239.0	240.0	242.0	59.8	52.6	65.7	0.19	0.19	0.18	23.9	12.7	20.3	84.9	27.2	25.00	108.8
BELS-RSP-002	240.0	242.0	240.0	50.5	51.3	55.4	0.16	0.16	0.18	21.5	13.6	16.7	77.6	22.4	25.00	89.6
BGLS-RSP-001	242.0	241.0	242.0	8.5	8.6	8.8	0.30	0.30	0.35	3.6	2.4	2.7	74.5	3.6	3.00	120.0
BGLS-RSP-002	242.0	241.0	242.0	9.4	8.3	9.6	0.24	0.18	0.17	3.9	2.1	3.3	84.2	4.4	3.00	146.7
BLLS-RSP-001	479.0	475.0	468.D	3.9	3.8	3.9	0.08	0.08	0.07	3.0	2.0	2.3	75.3	3.1	2.00	155.0
BLLS-RSP-002	482.0	483.0	485.0	4.0	3.9	4.0	0.08	0.06	0.13	3.1	2.1	2.3	73.9	3.1	2.00	185.0
CMLS-RSP-001	457.0	456.0	456.0	6.6	6.6	7.2	0.40	0.40	0.42	5.1	3.6	3.7	71.3	5.0	7.50	66.7
CMLS-RSP-002	457.0	458.0	458.0	6.0	6.0	6.1	0.27	0.27	0.63	4.7	3.8	2.7	58.0	3.6	7.50	48.0
DWLS-RSP-001	486.0	485.0	488.0	22.1	22.9	24.0	0.14	0.21	0.14	19.0	10.9	15.6	82.0	20.9	20.00	104.5
DWLS-RSP-002	485.0	486.0	485.0	21.3	22.0	22.8	0.16	0.14	0.15	18.3	10.7	14.8	81.1	19.8	20.00	99.0
FDLS-RSP-001	239.0	239.0	239.0	21.1	22.1	22.8	0.21	0.25	0.20	9.0	6.6	6.1	68.2	8.2	10.00	82.0
FDLS-RSP-002	240.0	239.0	240.0	23.9	24.0	25.0	0.26	0.26	0.31	10.0	7.0	7.1	70.9	9.5	10.00	95.0
FRLS-RSP-001	212.0	213.0	215.0	4.9	5.4	5.9	0.23	0.22	0.26	2.0	1.5	1.3	66.5	1.7	2.00	85.0
FRLS-RSP-002	212.0	213.0	215.0	5.2	5.6	6.1	0.25	0.25	0.27	2.1	1.5	1.4	70.0	1.9	2.00	95.0
FSLS-RSP-001	239.0	240.0	240.0	33.7	36.8	42.7	0.14	0.14	0.13	14.8	10.3	10.8	71.7	14.2	15.00	94.7
FSLS-RSP-002	239.0	239.0	240.0	31.4	34.7	39.8	0.57	0.18	0.19	13.9	10.7	8.9	63.9	11.9	15.00	79.3
H5LS-RSP-001	244.0	242.0	242.0	9.2	8.8	9.5	0.62	0.79	0.73	3.8	2.5	2.9	74.7	3.9	3.00	130.0
H5LS-RSP-002	242.0	242.0	241.0	10.2	9.5	10:0	0.49	0.81	0.60	4.1	2.9	2.9	70.8	3.9	3.00	190.0
HCL8-RSP-001	242.0	242.0	243.0	28.4	27.1	26.0	0.12	0.10	0.12	11.2	9.0	6.7	59.3	9.0	15.00	60.0
HCLS-RSP-002	243.0	242.0	243.0	28.3	28.9	25.6	0.12	0.11	0.12	11.2	8.6	7.1	63.6	9.5	15.00	63.3
HKLS-RSP-001	241.0	241.0	242.0	80.3	60.1	38.2	0.45	0.30	0.72	27.1	20.6	17.7	65.1	23.7	40.00	59.3
HKLS-RSP-002	240.0	241.0	241.0	62.4	63.2	65.0	0.23	0.36	0.65	26.6	15.9	21.3	80.2	28.6	40.00	71.8
HSLS-RSP-001	208.0	206.0	208.0	240.3	26.2	28.1	0.19	0.19	0.28	9.0	5.8	6.9	76.5	9.2	10.00	92.0
HSLS-RSP-002	208.0	206.0	208.0	24.1	26.4	27.7	0.17	0.19	0.20	9.0	6.7	6.7	77.4	9.0	10.00	90.0
JHLS-RSP-001	244.0	243.0	243.0	50.9	52.4	51.6	0.21	0.65	0.19	21.4	15.4	14.9	69.6	20.0		
JHLS-RSP-002	245.0	244.0	245.0	44.1	42.9	45.1	0.36	0.54	0.32	18.4	12.7	13.4	72.7	18.0		
MWLS-RSP-001	241.0	240.0	241.0	11.0	11.6	12.4	0.19	0.13	0.14	4.7	2.5	4.0	84.8	5.4	7.50	72.0

Prepared by Wilcox Consulting Inc. - Madeira Beach Office - 11/8/00


Page 1

Most condition indicators are not visible to the unaided eye

Visual inspection

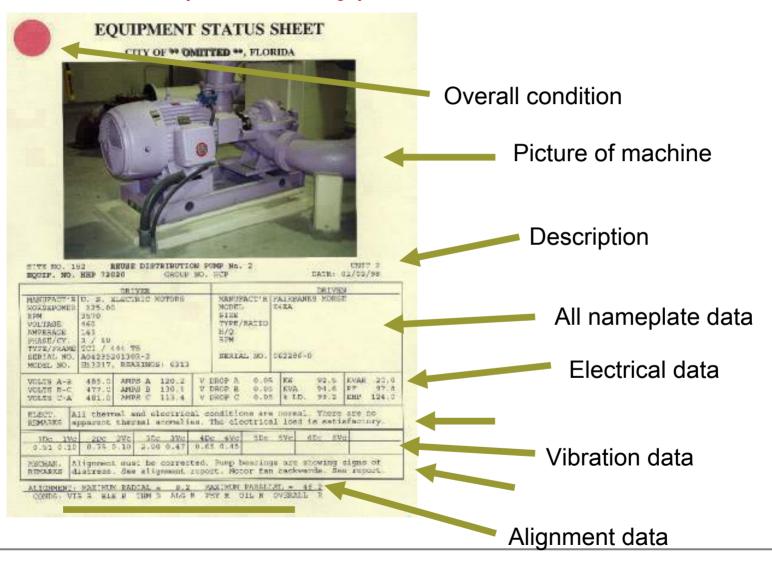


Alignment of inspection and correction data

Baseline machine performance tests

EQUIPMENT EVALUATION REPORT

TDH = TESTED H/Q CURVE


EHP = TESTED ELECTRICAL HORSEPOWER

EFF = TESTED EFFICIENCY

FAC = APPROXIMATE FACTORY H/Q CURVE

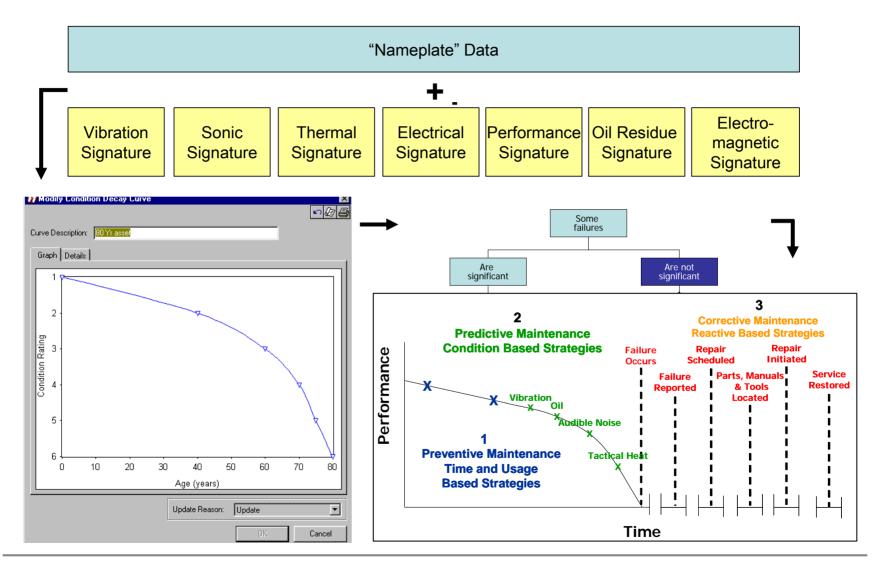
Baseline at handover sets life cycle benchmark. Conforms to factory test curves?

Status sheet (summary)

Equipment status list

Severity color code

			Ju	ne, 1998				
Equipment Number	Site Number	Overall	Vibration	Electrical	Thermo- graphy	Alignment	Physical.	Oil
LOCEQ	SITENO	GACC	VIBC	ELEC	THRC	ALGC	PHY	OILC
20LS-RSP-001	113A	72 O 496	N	N	N	N	R	N
20LS-RSP-002	1138	Y	Y	В	В	N	В	N
ABLS-RSP-001	101A	Y	B	В	В	N	В	N
ABLS-RSP-002	101B	Y	Y	В	В	N	B	N
ABLS-RSP-003	101C	Y	В	N	N	N	R	N
ABTP-ADU-001	201	В	В	Y	В	N	В	В
ABTP-ADU-002	202	Y	N	N	N	N	В	В
ABTP-ADU-003	203	В	N	N	N	N	B	В
ABTP-ADU-004	204	R	N	N	N	N	В	B
ABTP-BC1-001	205	R	N	N	N	N	В	R
ABTP-BC1-002	206	R	N	В	В	N	В	R
ABTP-BC1-002	207	R	В	8	В	N	В	R
ABTP-MAC-001	225	N	В	B	8	N	В	N
ABTP-PFP-001	226	N:	В	В	В	N	В	N
ABTP-SFP-001	223	N	N	N	N	N	N	N
ABTP-SFP-002	227	N	N	Y	В	N	Y	N
ABTP-SFP-002	224	N	R	R	В	N	R	N
ABTP-TBF-001	211	N	N	В	В	N	В	N
ABTP-TBF-002	212	N	N	В	В	N	В	N
ABTP-TBF-003	213	N	8	8	Y	N	В	N
ABTP-TBF-004	214	N	N	8	В	N	8	N
ABTP-TBF-005	215	N	Y	Y	В	N	У	N
ABTP-T8F-006	216	N	N	Y	В	N	y	N
ABTP-THK-001	220	R	N	N	N	N	N	R
ABTP-THK-002	221	8	8	8	R	N	8	N


Failure codes

- Use cause-effect diagrams to create codes
- Define codes by class of asset
- Use "drop-down" list

Failure Code

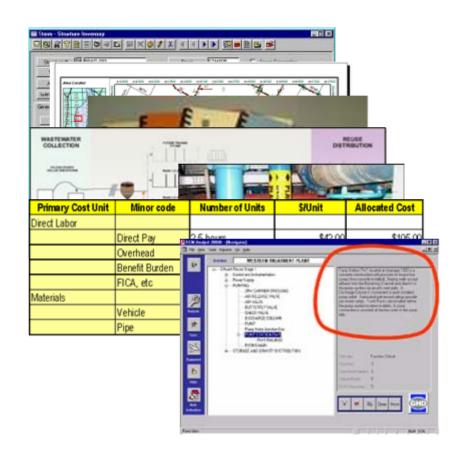
- Coupling failure
- Lube fault
- Misaligned
- Operator error
- Overloaded
- Water damage
- Worn

Condition-based maintenance

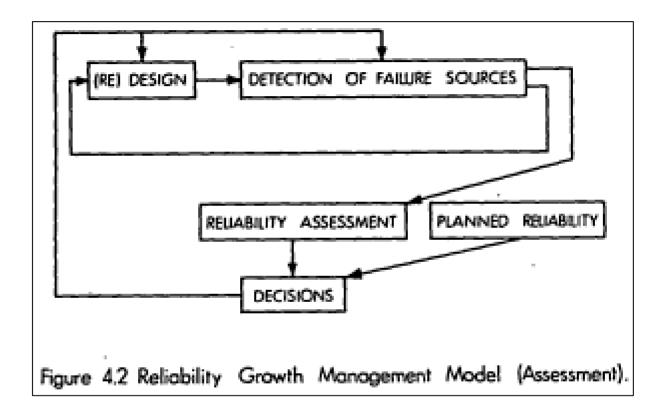
Toward a maintenance strategy business case

Table 6.6 Mitigation Strategies: Reuse Scheme Only Failure Modes

	Maintenand	enario A	Maintenanc	enario B	Maintenance Scenario C					
Maintenance Budget	Maintenance Budget \$15,000			Maintenance	get \$7,000	Maintenance Budget \$3,500				
Probability Improvement cause by maintenance	0.5 R	ion	Same P	ability	1.3 Increase					
	Improved	Busi	ness Risk	Improved	Е	Business	Improved	Bus	Business Risk	
System / sub-system /	Probability		osure (\$)	Probability of			Probability of	Exposure (\$)		
component	of Failure		(+)	Failure	Exi	posure (\$)	Failure	7		
Delivery Channel	0.010	\$	302	0.010	\$	302	0.010	\$	302	
Pump Station		Ť								
1 pump fails	0.150	\$	648	0.300	\$	1,296	0.390	\$	1,685	
2 pumps fail	0.050	\$	684	0.100	\$	1,368	0.130	\$	1,778	
3 pumps fail	0.025	\$	761	0.050	\$	1,523	0.065	\$	1,980	
All pumps fail	0.005	\$	302	0.010	\$	605	0.013	\$	786	
Control System										
Power supply / sub-station	0.050	\$	1,512	0.050	\$	1,512	0.050	\$	1,512	
Rising Main										
Pressure or pipe deflection	0.030	\$	907	0.030	\$	907	0.030	\$	907	
Adjacent construction work	0.050	\$	1,512	0.050	\$	1,512	0.050	\$	1,512	
Massive earth movement	0.050	\$	2,268	0.050	\$	2,268	0.050	\$	2,268	
Ground movement	0.050	\$	2,268	0.050	\$	2,268	0.050	\$	2,268	
HOR Storage										
HORS structure	0.050	\$	1,368	0.050	\$	1,368	0.050	\$	1,368	
Variable Gate - Outlet 5W	0.050	\$	342	0.100	\$	684	0.130	\$	889	
Variable Gate - Outlet to										
eastern carrier	0.050	\$	342	0.100	\$	684	0.130	\$	889	
Penstocks - Actuator Fail	0.050	\$	342	0.100	\$	684	0.130	\$	889	
Penstocks - Manual Overide	0.050	\$	342	0.100	\$	684	0.130	\$	889	
External Factors			0.05:					_		
Power Failure	0.200	\$	3,024	0.200	\$	3,024	0.200	\$	3,024	
Total		\$	16,925		\$	20,689		\$	22,947	
Sum of Maximum Value		\$	8,474		\$	8,485		\$	8,942	

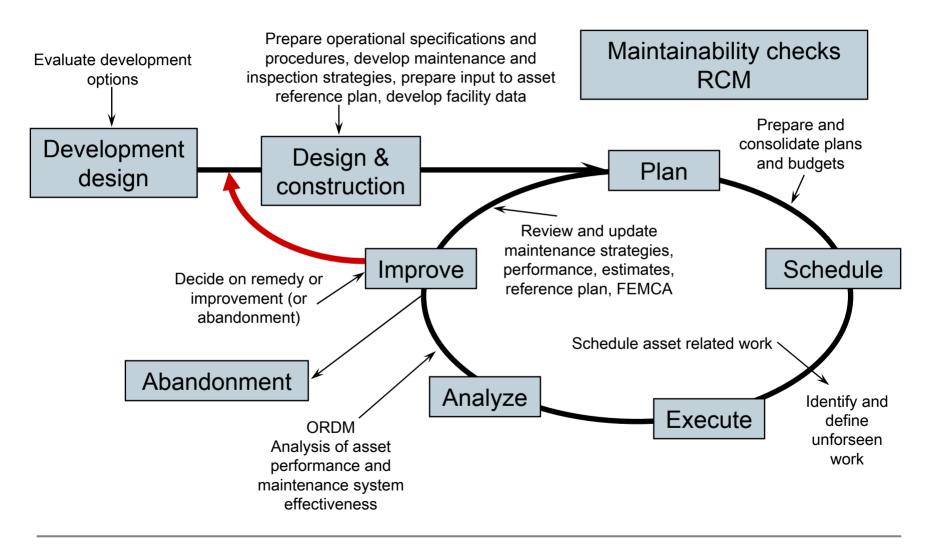

Conclusion

Justifiable maintenance between \$1,500 and \$3,500 per annum.


Major components of asset data

Used to create an asset ID...

- Physical attributes
- Geo-reference
- O&M manuals
- Drawings and photos
- Life cycle costs
- Knowledge and strategy



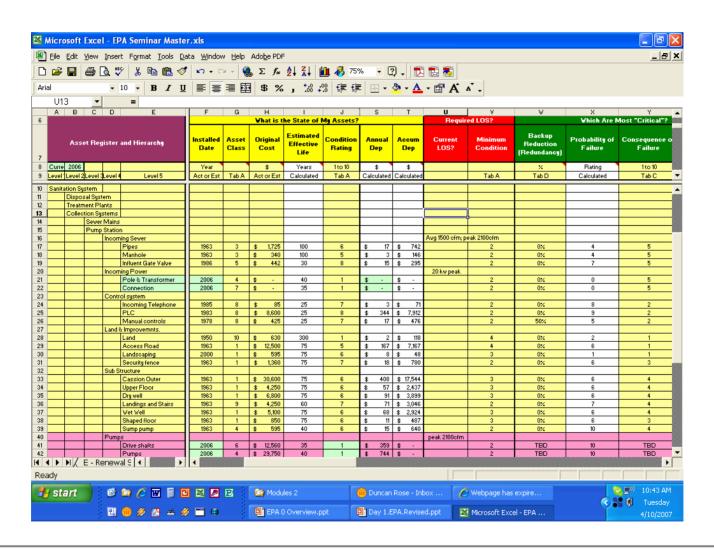
Tying together failure, reliability, and design

Military Handbook 189, Reliability Growth Management 1981

Linking maintenance and design

Key points from this session

Given my system, what are my best O&M strategies?


Key Points:

- Reactive emergency maintenance can be the most expensive type of maintenance and should typically make up no more than 20% to 25% of total maintenance effort
- Preventive and predictive-based pro-active strategies should comprise the bulk of the effort
- Assets, especially dynamic assets, leave discernable clues as to their capacity to perform.
- The most cost effective maintenance strategy for a given asset is determined by the likelihood of failure and the consequence of failure.
- "Run to failure" may well be the most costeffective maintenance strategy for a given asset, but only when coupled with a carefully developed failure response plan.

Associated Techniques:

- Condition-based monitoring plans and deployment
- Reliability Centered Management
- Root cause analysis
- Asset maintenance strategies (zero breakdown, total productivity, reliability centered maintenance)
- Failure response plans

Tom's spreadsheet

